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Spike-Based Motion Estimation for Object Tracking
Through Bio-Inspired Unsupervised Learning
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Abstract— Neuromorphic vision sensors, whose pixels output
events/spikes asynchronously with a high temporal resolution
according to the scene radiance change, are naturally appropriate
for capturing high-speed motion in the scenes. However, how to
utilize the events/spikes to smoothly track high-speed moving
objects is still a challenging problem. Existing approaches either
employ time-consuming iterative optimization, or require large
amounts of labeled data to train the object detector. To this
end, we propose a bio-inspired unsupervised learning framework,
which takes advantage of the spatiotemporal information of
events/spikes generated by neuromorphic vision sensors to cap-
ture the intrinsic motion patterns. Without off-line training, our
models can filter the redundant signals with dynamic adaption
module based on short-term plasticity, and extract the motion
patterns with motion estimation module based on the spike-
timing-dependent plasticity. Combined with the spatiotemporal
and motion information of the filtered spike stream, the tra-
ditional DBSCAN clustering algorithm and Kalman filter can
effectively track multiple targets in extreme scenes. We evaluate
the proposed unsupervised framework for object detection and
tracking tasks on synthetic data, publicly available event-based
datasets, and spiking camera datasets. The experiment results
show that the proposed model can robustly detect and smoothly
track the moving targets on various challenging scenarios and
outperforms state-of-the-art approaches.

Index Terms— Neuromorphic vision sensor, bio-inspired, unsu-
pervised learning, short-term plasticity, spike-timing-dependent
plasticity, motion estimation, spiking camera, high-speed object
tracking.

I. INTRODUCTION

HIGH-speed object detection/tracking plays a critical role
in autonomous driving and intelligent video analysis.
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Despite recent advances in object detection/tracking, it is still
challenging to deal with uncertainty caused by object occlu-
sions, disappearance, and reappearance. Moreover, a unique
challenge posed by high-speed moving objects is that the
images captured by digital cameras will be blurry due to
insufficient sampling rate (typically 30Hz). Distinct from the
conventional frame-based cameras, the neuromorphic vision
sensors generate asynchronously binary outputs for all pixels
based on the scene radiance change. Two common types of
neuromorphic vision sensors are known as event cameras [1],
[2], [3], [4] and spiking cameras [5], [6], [7], which apply
a sampling mechanism that is similar to the photoelectric
conversion process of the retina. Due to their distinctive
high temporal resolution (<1 ms), motion information can be
recorded more completely and accurately.

Several motion tracking methods [1] for event-based input
have been developed in recent years. These methods can
distinguish events belonging to different moving objects and
have shown the superiority of neuromorphic vision sensors
on the high-speed detection task. However, how to smoothly
track multiple high-speed moving objects is still a challenging
problem. Most of the existing object tracking methods for
event cameras are based on motion segmentation or clustering
models [8], [9], [10], [11], which learn motion models through
time-consuming iterative optimization. Once the model param-
eters are not well initialized, the clustering results will be
poor [12].

Spiking Neural Networks (SNNs) are viewed as the third
generation of neural network models, which succeed in mod-
eling behavior and learning potential of the brain [13]. Distinct
from traditional Deep Neural Networks (DNNs) [14], the
connection weight between neurons is modified by the tem-
poral relationship of spikes [15], [16], [17]. As learning and
information transmission is triggered by spikes, SNNs have
the advantages of low energy consumption and low-latency,
and are highly desirable for neuromorphic computing hard-
ware [18], [19]. The neuromorphic vision sensors convert light
signals into electrical signals, yielding spike trains or events as
output that can be naturally processed by SNNs. There exist
some motion estimation methods for event cameras based on
SNNs [20], [21], [22], [23]. They are designed for simple
scenes and can not be generalized to complicated cases with
multiple moving objects directly. Parameshwara et al. [24]
propose the first deep encoder-decoder SNN architecture,
SpikeMS, for motion segmentation using events as input.
Huang et al. [5] propose a spiking network for objects detec-
tion and tracking using spiking cameras. However, the motion
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Fig. 1. Architecture of the ODTSnet for neuromorphic vision sensors. The dynamic adaption module filters the spikes/events from neuromorphic vision
sensor. Then the motion estimation module extracts motion patterns from the filtered spikes for object detection/tracking.

information is not taken into account, making it easy to fail if
spiking cameras have ego-motion.

Motivated by the imbalances between neuromorphic vision
sensors and SNN-based tracking algorithms, in this paper,
we seek to answer the following questions: How to utilize
the spatiotemporal information of spiking cameras based on
SNN? How to estimate the motion in challenging scenarios
with spikes and tracking multiple objects smoothly? To that
end, we propose an unsupervised Spiking Network for Object
Detection and Tracking (ODTSnet, illustrated in Fig. 1). The
ODTSnet framework contains two specific designed mod-
ules to directly process the spatiotemporal information of
spikes/events: the Dynamic Adaption module and the Motion
Estimation module. The proposed framework is inspired by the
visual pathways for dynamic vision, which has the short-term
adaption property and extracts the motion information through
spike-timing-dependent learning. By fully taking advantages
of both modules, our models can robustly detect and smoothly
track moving objects. Our contributions can be summarized as:

• We propose a novel bio-inspired unsupervised framework
based on spiking neural networks to robustly detect and
smoothly track moving objects.

• We build short-term plasticity based filters by utilizing
the spatiotemporal information of neuromorphic vision
sensors, which can filter the redundant signals for efficient
motion analysis.

• We propose a motion estimation module based on spike-
timing-dependent plasticity, which can perceive motions
in various complex scenes.

• We evaluate the models on various challenging neuro-
morphic datasets, and the proposed model outperforms
the state-of-the-art approaches.

II. RELATED WORKS

In recent years, many detection and tracking methods based
on event cameras have been proposed. In order to maximize
the low latency of the event camera and verify the feasibility of
the event camera in detecting and tracking tasks, many track-
ing algorithms initially assumed that the camera was fixed,
and events were only generated by moving objects. Therefore,
the information of different objects (such as position, size,
etc.) can be obtained by clustering events, and then tracking is
achieved by updating the parameter information corresponding
to different objects [25], [26], [27], [28], [29], [30], [31].

However, most of these algorithms can only track objects with
relatively simple shapes, such as lines or circles. Therefore,
in order to continuously track objects with variable shapes,
many algorithms propose methods of iteratively updating ker-
nel functions/filters [32], [33], [34]. Although these algorithms
can achieve better performance when the camera is stationary,
in scenes with camera self-motion, the event stream generated
by the camera can seriously interfere with the detection and
tracking of moving objects.

Therefore, in order to detect independently moving objects
and distinguish the event/spikes flow generated by the
ego-motion of the camera, some methods distinguish the
objects by grouping them with motion estimation [8], [9],
[10]. For example, Mitrokhin et al. [9] transformed the events
into a time image with a four-parameter motion model, and
performed a global minimization on the warped image to
separate different moving targets. Stoffregen et al. [10] jointly
estimated the motion parameters and event-cluster membership
through an iterative Contrast-Maximization (CM) algorithm
on events sequence, but they need to predefine the number
of clusters. Although these methods have shown excellent
performance in some challenging scenarios, they usually take
a long time to find the optimal motion parameters, and the
low temporal latency characteristic of events is not fully
utilized in these models. Besides, parameter initialization plays
a critical role in finding optima. Otherwise, it may fail to find
the motion pattern corresponding to each independent motion
object or ego-motion of the camera. Liu et al. [12] proposed
an improved global optimal CM method with novel bounding
functions. However, it still needs to perform gradient-based
optimization on each sequence, and it only tests on rotation
scenes. Zhou et al. [11] used a space-time event graph rep-
resentation to exploit the spatio-temporal nature of events,
leading to globally consistent and locally coherent event-based
motion segementation results. This method was also designed
in the spirit of motion compensation [35], where the initializa-
tion of parameters is very time-consuming and is a key factor
affecting performance.

In recent years, some deep-learning-based methods are
proposed to solve the visual motion problem [36], [37], [38],
[39], [40]. In the deep-learning based methods, events within
a time-interval are binned and converted to an frame-like
input representation to an encoder-decoder network [36],
[37]. Using the events within a time-window, Parameshwara
et al. segmented multi-object motion by jointly optimizing the

Authorized licensed use limited to: Peking University. Downloaded on January 21,2023 at 07:51:42 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: SPIKE-BASED MOTION ESTIMATION FOR OBJECT TRACKING 337

camera ego-motion and motion of independently moving
objects. In order to contain clear spatio-temporal motion infor-
mation, Chen et al. [39] converted the events into a sequence of
synchronous Time-Surface with Linear Time Decay (TSLTD)
frames. Instead of extracting the motion information globally,
Kepple et al. [40] jointly learned visual motion and confidence
from the events in spatially local patches. However, it is gen-
erally computationally expensive to optimize the parameters
of the deep neural networks. Moreover, deep-learning-based
object tracking models [41], [42], [43], [44] usually depend
on “tracking-by-detection”, which need to train detector for
each object and require a large amount of labeled data with
high cost. Moreover, the texture information that needs to be
used to train the detector is primarily lost in neuromorphic
vision sensors.

Improvements in recent years have enabled spiking neural
networks to be trained directly through backpropagation [45],
[46], [47], which in turn enables the use of deep
spiking neural networks to accomplish complex tasks.
Parameshwara et al. [24] proposed a novel loss consisting of
a binary cross entropy loss and spike loss to end-to-end train
the SpikeMS, obtaining binary motion-based segmentation.

III. PRELIMINARIES

A. Event Cameras

Event cameras (also called Dynamic Vision Sensors, DVS)
are one of the neuromorphic vision sensors, where each pixel
independently outputs events when brightness change exceeds
a given threshold [1]. The output of event cameras usually
takes the form of address event representation (AER) ξ :

{x, y, t, p}, where (x, y) is the event location on the image
plane, t is the timestamp, and p ∈ {−1, 1} is the polarity of
the event (the sign of the intensity change).

B. Spiking Cameras

Unlike event cameras, spiking cameras continuously capture
photons and generate asynchronous spikes for all pixels when
the accumulated intensity reaches a predefined threshold [5],
[6], [7]. The output of spiking cameras can be represented by
a 3-tuple S : {x, y, t}, where (x, y) is the spatial coordinates
on the image plane, and t is the firing time of the spike.
An illustration for event cameras and spiking cameras is
shown in Fig. 2. Event cameras only generate events for
pixels where brightness changes exceed a certain threshold.
In spiking cameras, every pixel will fire spikes according to
the input scene radiance, which make it ready-to-use for image
reconstruction [5], [48].

C. Spike-Timing-Dependent Plasticity (STDP)

STDP is a local unsupervised learning rule that modifies
synaptic connection strength according to the time order
of pre- and postsynaptic spikes [49], [50]. The potentiation
of synaptic connection (synaptic weight) occurs when the
presynaptic neuron fires shortly before the postsynaptic spike
while the depression of synaptic connection occurs when
the postsynaptic neuron fires shortly before the presynaptic
neuron.

Fig. 2. An illustration of the working mechanism for event cameras and
spiking cameras. Event cameras asynchronously generate events for pixels
where the brightness change exceeds a certain threshold; spiking cameras
generate spikes for every pixel according to the scene radiance. The stronger
the scene radiance, the denser the spike streams.

Fig. 3. The dynamic of postsynaptic potential regulated by different types
of STP. Left represents short-term facilitation and Right represents short-term
depression. The postsynaptic potential will converge to a stable value when
receiving input spikes with fixed frequency.

D. Short-Term Plasticity

Distinct from STDP that has a long-term influence on the
synaptic weight, short-term plasticity (STP) [51], [52] refers
to the short-term change of postsynaptic potential that lasts
tens to thousands of milliseconds. When a postsynaptic neuron
receives a sequence of spikes from presynaptic neuron, the
postsynaptic potential (PSP) changes according to [53]:

PSP(t) = A · x(t) · u(t),
dx(t)

dt
=

1 − x(t)
τD

− u(t−)x(t−)δ(t − tsp),

du(t)
dt

=
U − u(t)

τF
+ C[1 − u(t−)]δ(t − tsp), (1)

where A is the max amplitude of input efficacy, x(t) and u(t)
represent the amount and release probability of neurotransmit-
ters in the axon at time t respectively, δ(t) is the Dirac delta
function. When a postsynaptic neuron receives a spike from
presynaptic neuron at time tsp, x(t) decreases by u(t−)x(t−)

and recovers to 1 with time constant τD , while u(t) increases
by C(1 − u(t−)) and recovers to baseline release probability
U with time constant τF . Here C is a constant parameter that
effects the change of u(t).

Two types of STP named short-term facilitation and short-
term depression have been experimentally observed. They have
opposite effects on synaptic strength and can be described by
Eq. (1) with different time constants τD and τF . As illustrated
in Fig. 3, if the firing frequency of the presynaptic spikes are
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Fig. 4. Structure of the dynamic adaption module. The red dot indicates a
spike of a neuron, while the blue dot indicates no spike.

fixed, postsynaptic potential will converge to a steady value,
no matter what type of PSP.

IV. METHODOLOGY

In this section, we will introduce the proposed ODTSnet
(Fig. 1) in detail. We first introduce the Dynamic Adaption
module to filter redundant spikes/events based on STP and
Leaky Integrate-and-Fire (LIF) neurons. Then we present the
Motion Estimation module to detect motion underpinning the
spikes through a multi-layer spiking neural network and STDP
learning rule.

A. Dynamic Adaption Module

Owing to the sampling mechanism of neuromorphic vision
sensors, there exist redundant spikes/events when estimating
object motion based on the output of neuromorphic vision
sensors, which will hamper the subsequent high-level visual
tasks, e.g., object detection and tracking. Specifically, event
cameras still suffer the severe noise problem under low-light
scenarios [54], [55], [56], and spiking cameras also generate
spike streams for the background/static part of the scene.
To this end, we introduce the dynamic adaption based on
STP and LIF neurons to filter redundant spikes and events.
The structure of the dynamic adaption module is illustrated in
Fig. 4, which composed of temporal filter and spatial filter.

1) Unifying the Output of Spiking Cameras and Event Cam-
eras: Before implementing the STP-based temporal filtering
and LIF-based spatial filtering, we need to unify the output
of spiking cameras and event cameras. The outputs of spiking
cameras are spikes with a frequency of 40, 000 Hz, which
can be directly inputted to postsynaptic neurons with STP
for temporal filtering. For event cameras, as the outputs are
sparse events with an asynchronous sampling frequency up to
106 Hz [3], a period or a fixed number of events are generally
used for analysis. Therefore, at each time step, there might be
several events at one location, which will trigger the change
of STP several times. To avoid this problem, we need to find
the transformation of the events cloud ξ from R3

→ R3 (the
polarity of the events is not considered in our methods). The
transform method is similar to generating a time-image T [9].
Specifically, at each timestamp, the firing time of the input
event is proportional to the average timestamp of the events,

Ti j =
1

Ci j

∑
t : t ∈ ξi j , (2)

Fig. 5. Illustration of same arrangement of polarities generated by different
movements.

where Ci j is the number of spikes firing at pixel location (i, j),
ξi j is the set of events firing at location (i, j) in the time
window (t, t + δ). Then the events were represented as ξ ′

=

{x, y, T }. The polarity of events is not used in our model.
Instead of polarity, the space-time arrangement of events is
the key information for estimating motion. The polarity can be
used as auxiliary information, yet it is not critical (e.g., motion
segmentation without polarity [10]). For example, as illustrated
in Fig. 5, the arrangement of polarities generated by leftward
and rightward moving gratings are the same.

2) Temporal Filtering With STP: The 3-element tuples
{x, y, t} of spiking cameras and event cameras are first deliv-
ered to the temporal filter (Fig. 4), which is utilized to remove
the redundant spikes/events according to their firing patterns.
Each postsynaptic neuron corresponds to each input pixel
location, and the postsynaptic potential of each neuron is
modified by the temporal regularity of spikes/events. If the
input spikes or events have a fixed frequency (corresponds to
the background or static areas), the postsynaptic potential will
converge to a stable state after several spikes arrive (Fig. 3).
By taking advantage of the sensitivity of the postsynaptic
potential to the release time mode of the input spike streams,
the spike streams generated by the background or static areas
can be filtered. For the sake of derivation, the dynamics of x
and u in Eq. (1) can be rewritten as the following difference
equations by integrating between spikes n and n + 1 [53]:

xn+1 = 1 − [1 − xn(1 − un)] exp
(

−
1tn
τD

)
, (3)

un+1 = U + [un + C(1 − un) − U ] exp
(

−
1tn
τF

)
, (4)

where xn and un denote the value of x and u between spikes
n and n + 1, 1tn denotes the interval between spikes n and
n + 1. Similar to [53], we set C = U . If the spike rate ρ

keeps constant, x and u will converge to their steady-state
values x∞(ρ) and u∞(ρ), that is:

x∞(ρ) = 1 − [1 − x∞(ρ)(1 − u∞(ρ))] exp
(

−
1

ρτD

)
, (5)

u∞(ρ) = U

+ [u∞(ρ) + C(1 − u∞(ρ)) − U ] exp
(

−
1

ρτF

)
.

(6)
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Fig. 6. Structure of the motion estimation module. Motion estimation layer
includes motion neurons corresponding to different motion vectors at each
pixel location, which are represented by different colors. The motion of each
pixel is determined by weighted sum of the motion neurons, whose weights
are adjusted by the STDP rule. The lateral inhibition is introduced to the
motion competition layer to make motion patterns in the same local region
more consistent.

By rearranging the Eq. (5) and Eq. (6), we get:

x∞(ρ) =

1 − exp(− 1
ρτD

)

1 − [1 − u∞(ρ)] exp(− 1
ρτD

)
, (7)

u∞(ρ) =

U + (C − U ) exp(− 1
ρτF

)

1 − (1 − C) exp(− 1
ρτF

)
. (8)

As the product of x and u, the postsynaptic potential PSP
will also converge to a steady state:

PSP∞ = A · x∞ · u∞. (9)

Therefore, if the firing rate of input spikes varies, the STP
dynamics will vary around the steady-state. State change of
the input spikes/events can be detected by evaluating the STP
dynamics, e.g. x , u or postsynaptic potential PSP.

Specifically, we use the facilitation dominated STP model
with τD = 0.05 s, τF = 0.5 s, U = C = 0.15, and detect the
redundant spikes based on the difference between PSPn and
PSPn+1, where n is the spike index. Postsynaptic spike is fired
according to the change value of x ,

Ii j =

{
1, |xn+1 − xn| ≥ ϑ

0, |xn+1 − xn| < ϑ,
(10)

where Ii j is the indicator representing whether postsynapse
fire or not, which equals to 1 when the absolute value of
change exceeds the predefined threshold ϑ .

3) Spatial Filtering: In addition to filtering the input
spikes/events according to their temporal regularity, spatial
filtering is also introduced to remove noise. The spatial fil-
tering is conducted implicitly by regarding the filtered spikes
obtained above (I) as afferent spikes to leaky integrate-and-
fire (LIF) neurons [57]. The sub-threshold dynamics of a LIF
neuron can be described as:

τm
dv(t)

dt
= −[v(t) − vrest ] + RI (t), (11)

where v(t) represents the membrane potential of the LIF
neuron at time t , τm denotes the membrane time constant,
vrest is the resting potential, R is the resistance value, I (t)
is the input current. As the spikes generated by each neuron
in the temporal filter layer transmit to the eight-connected
adjacent LIF neuron (Fig. 4), the input current I (t) =

∑
x Ix ,

with x denoting the location of neuron connected to the LIF.
After integrating the input spike, the state of the LIF neuron
is updated according to Eq. (11) and a predefined threshold θ :

lim
δ→0,δ>0

v(t + δ) =

{
vrest , v(t) ≥ θ

v(t), v(t) < θ.
(12)

When the membrane potential v exceeds a certain threshold θ ,
the LIF neuron will fire a spike, and the membrane potential v

goes back to the resting value vrest . Because the LIF neuron is
locally connected to its pre-layer neurons and only be activated
when the integrated voltage exceeds the threshold, random
noise events/spikes will be filtered out.

4) Advantages Over Using Simpler Filter: The STP-based
temporal filter implicitly and smoothly counts the spikes.
We can filter out redundant spikes without choosing an interval
explicitly to process spikes in advance. If it is simply filtered
by counting the spike frequency, it need to pre-define a
counting window. If the time window is too long, fast-motion
will results in more recent timestamps covering all of the
older ones and make motion indistinguishable. However, small
counting window will bring about significant noise, which
make it impossible to effectively filter the spikes corresponding
to non-moving objects. Similarly, LIF-based spatial filter not
only counts the spikes in a local area at the current moment,
it also retains the influence of the input at the previous moment
(the first term of Eq. (11)). Simply spatial averaging can also
achieve the effect of spatial filtering, but it does not retain the
continuity of timing.

B. Motion Estimation Module

We propose a multi-layer feedforward spiking network to
estimate the motion of objects, which is shown in Fig. 6.

1) Motion Estimation (M1): In this layer, we set 8×4 neu-
rons at each pixel corresponding to eight motion directions
and four motion speeds. The motion pattern m of each spike
is determined by the weighted sum of the motion neurons:

m =

32∑
k=1

wkvk, (13)

where wk and vk refers to the synaptic weight and the motion
vector of the k-th motion neuron, respectively. In order to
distinguish this layer from the module name, we will call this
layer M1 layer in the following.

At each pixel location, there are 32 weights corresponding
to different motion patterns, which will be modified according
to the motion pattern of each pixel. Here, we propose an
unsupervised learning algorithm to update the synaptic weights
of the motion neuron by taking advantage of the STDP
learning rule, the principle of which is explained in Fig. 7.

Fig. 7 shows the postsynaptic spikes of downward and
leftward motion cells, respectively. The postsynaptic spikes
at timestamp t + 1 are obtained by warping filtered spikes at
timestamp t + 1 with different motion neurons. The spikes
shown in the yellow and purple squares are results based on
the speed of 1 pixel/timestamp downward and leftward motion
neuron, separately. The synaptic weights of motion neurons are
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Fig. 7. Unsupervised motion learning with rectified STDP learning rule
[Eq. (14)]. Red dot indicates a spike, while blue dot indicates no spike at that
location. The yellow and purple squares represent downward and leftward
motion neurons, respectively.

updated by comparing the location of all firing spikes between
postsynaptic spikes at timestamp t + 1 and filtered spikes
of input layer at timestamp t . Regarding the firing spikes of
input layer at timestamp t as presynaptic spikes, the synaptic
weight wk

i of the k-th motion cell at location i (we simplify
the subscript as 1-dimension for brief description) is updated
according to the following rectified STDP learning rule:

1wk
i = η

κ ∗ Ai

Ni
, (14)

Ai = A+0(t pre
k, j − t post

k, j ) − A−(1 − 0(t pre
k, j − t post

k, j )).

(15)

Here η is the learning rate of the synaptic weight, j refers
to the neighbor neurons of neuron i . t pre and t post repre-
sent the timestamp of the filtered spikes and postsynaptic
spikes, respectively. Ni is the number of firing spikes in
the neighbor region of neuron i , which is computed by
Ni =

∑ j∈Nei(i)
j=1 0(t post

k, j − t). 0(x) is the indicator function
that equals to 1 only when x = 0. The A+ and A− are
parameters specifying the amount of change with long-term
potentiation and long-term depression, respectively. κ refers
to a convolutional kernel that has a two-dimensional Gaussian
distribution with mean µ = 1. After updating the weights of
motion cells using Eq. 14, M1 layer obtains the motion vector
(u, v) of each spikes with Eq. 13.

2) Motion Competition (MC): In the areas with dense
spikes, the motion learning of each neuron would be affected
by neighboring spikes, and different motion neurons may have
the same synaptic weight and will cause motion confusion
(illustrated in Fig. 8.) To correct confuse motion patterns in a
local region, we introduce a motion competition layer based
on the Winner-Take-All (WTA) mechanism, where the most
frequent motion vector will dominate the motion pattern of
the region. In other words, after extracting the motion pattern
through the rectified STDP learning rule, lateral inhibition
between motion neurons is introduced in a region that is larger
than the neighboring size defined in Eq. (14) and Eq. (15).
If there are multiple winners, all the motion cells will be
inhibited. The aperture problem [58] is alleviated incidentally
owing to the larger region under consideration in WTA. To find

Fig. 8. Illustration of motion confusion in an edge with dense firing
spikes. Except for the upper left and lower right motion neurons, the weight
increments of other neurons are the same. In the M1 layer, the motion of the
spikes in the square will be determined as the upper left with Eq. 13.

the winner motion neuron for each region, we use the motion
map to quantify the motion orientation of the individual spike
in the M1 and MC layers. Motion vectors are quantified into
eight motion orientations (0, π/4, π/2, . . . , 2π ). In M1 layer,
motion map M1 ≡ (pi j ) ∈ {1, . . . , 8} for each spatial location
(i, j), where the motion mode pi j is obtained by:

pi j = ⌊
tan−1(v/u) + π

2π/8
⌋ + 1 (16)

With such motion map, we can calculate the number
Ck

i j (k ∈ {1, 2, . . . , 8}) of each motion pattern in each spatial
neighborhood field where lateral inhibition is performed. Find-
ing the motion pattern with the largest number of occurrences
in each pixel location field p′

i j = arg max
k

Ck
i j , and obtain a

new motion map of MC layer Mc ≡ (p′

i j ).
By comparing the motion map M1 and Mc, finding the

position (i, j) where the motion pattern does not match, and
replace the motion vector of this position from (ui j , vi j ) to the

(ui ′ j ′ , vi ′ j ′) which has the maximum value C
p′

i j
i ′ j ′ in the local

region.

C. Object Tracking

To track different objects utilizing the motion patterns
and spike pixel location without prior knowledge about the
number or shape of moving objects, we use the density-based
spatial clustering of applications with noise (DBSCAN) algo-
rithm [59]. After applying the DBSCAN algorithm, we cal-
culate the mean pixel location and average velocity of spike
points that belong to the same cluster, to represent the center
location xc and velocity xv of the detecting object. The
DBSCAN distance function is constructed as follows:

Di, j ( p, m) = wp
∥∥ pi − p j

∥∥ + wm
∥∥mi − m j

∥∥ , (17)

where p denotes the spike position, m is the estimated motion
pattern, and wp, wm are the weight parameters to control the
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Fig. 9. Example results of the Dynamic Adaption module. The first row
represents the scene of a high-speed rotating fan, which is recorded by spiking
camera. The second row represents the scene of a ball that flies across a pillar,
which is recorded by event camera. The scene of the spiking camera in the
first column is reconstructed with TFP algorithm [62]. Images have been
brightened for visualization.

effect of each individual part. Since the scale of pixel loca-
tion and motion velocity are completely different, we utilize
standardized Euclidean distance to balance the contribution
of these variables. After obtaining the distance matrix of the
spikes, we can cluster them according to the distance and a
predefined neighborhood threshold ϵ.

Based on the estimated location and velocity, object assign-
ment is solved optimally with Hungarian algorithm [60].
In order to smoothly tracking the moving objects, we apply
Kalman filters to correct the detection results, in which the
state vector including the estimated location xc and velocity
xv of each cluster. Kalman filters [61] are quite functional for
predicting and correcting the states (e.g., location and velocity)
of objects through efficient linear processing, which have been
widely used in object tracking.

In our tracking model, the state vector used in Kalman filter
is xk = {xc,k, xv,k}, where xc and xv are the center position
and velocity vector of each cluster obtained above, k is the
processing time step. Based on the high temporal resolution
of the neuromorphic vision sensors, we assume a constant
velocity model as followed,

xc,k = xc,k−1 + xv,k−11t, (18)
1t = tk − tk−1. (19)

With such definition, the linear Kalman filter can be formu-
lated as:

x̂k = Ak x̂k−1 + vk, (20)
zk = H x̂k + wk, (21)

Ak =

[
I4×4 1t · I4×4
04×4 I4×4

]
, (22)

H =
[

I4×4 04×4
]
, (23)

where A is the transition matrix, H is the measurement matrix,
v ∼ N (0, Q) and w ∼ N (0, R) are the Gaussian distribution
of process noise and measurement noise, respectively.

V. EXPERIMENTS

In this section, we evaluate the performance of ODTSnet
for object tracking tasks on the synthetic data and real-world
data. We visualize the effect of each module, and compare the

proposed model with state-of-the-art approaches. Furthermore,
an ablation study is also conducted to analyze the performance
of the Dynamic Adaption module and the Motion Estimation
module individually.

A. Datasets

To test the generality of our models on the tracking
task, we use synthetic dataset, publicly available event-based
dataset, and spiking dataset, which include lots of challenging
situations that will hamper the tracking of multiple high-
speed objects. In addition to the event-based dataset which
is public available, the synthetic dataset and the real-world
spiking dataset are build specifically for this work.

1) Synthetic Dataset: The synthetic dataset includes two
cross-moving characters “A” and “C”, which is called
“crossAC” in the following.

2) Spiking Dataset: To evaluate the performance of ODT-
Snet for continuously tracking multiple high-speed targets,
we construct two ultra-high-speed scenarios using spiking
cameras. One is called Spiking Rotating Digits Dataset (SRD),
which uses a spiking camera to still shoot multiple high-speed
rotating digits (2400 revolutions per minute) during the day,
and the other is called Spiking Rotation Translation Character
(SRTC), which uses a spiking camera to move horizon-
tally indoors at night to shoot multiple high-speed rotating
characters.

3) Event-Based Dataset: The Extreme Event Dataset
(EED) [9] is collected by a DAVIS event camera in real-
world scenes [2]. The EED comprises several challenging sce-
narios, including occluded moving objects, small fast-moving
objects, and light-changing environments. Except for using
the EED to evaluate the tracking performance, we also use
event sequences of clockwise and counterclockwise rotating
disk [63] to evaluate the performance of the proposed motion
estimation modules.

Details of the datasets used in the following experiments is
reported in Tab. I.

B. Parameter Selection

In the ODTSnet, hyper-parameter settings of the STP model
and motion neurons are critical to the tracking results. In the
following, we will discuss how to choose the parameter of the
STP model and the influence of motion neuron number on the
performance of the motion estimation module.

1) Time Constant of STP: The selection of time constants
in the STP model is mainly to distinguish different input spike
patterns. The parameters should ensure that there is a strong
monotonic correspondence between different steady-state of
STP (x and u) and input sequences. Monotonic analysis of
Eq. (7) and Eq. (8) demonstrates that u∞ will monotonically
increase with the increase of ρτF , and x∞ will monotonically
decrease with the increase of ρτD . Fig. 10 shows the changes
of u∞ and x∞ with ρτF and ρτD respectively in Eq. (7) and
Eq. (8) under five types of STP when U = C = 0.15. The
ratio of the time constant τD and τF of five types of STP are
shown in Tab. II.
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TABLE I
SUMMARY OF THE DATASETS

Fig. 10. The steady value of u (left) and x (right) against different ρτF and
ρτD , respectively.

TABLE II
PARAMETER SETTINGS OF DIFFERENT TYPES OF SHORT-TERM

PLASTICITY MODELS. T IS THE TEMPORAL
RESOLUTION OF CAMERAS

As can be seen in the Fig. 10, when ρτF and ρτD are
in the range of [0.1, 50], both u∞ and x∞ have a relatively
larger gradient, which is conducive to filtering the input with
varying input frequency (that is, corresponding motion area).
According to the gradient of u∞, it is slightly slower at both
very small and big firing rates, and the gradient in the middle is
larger. If filtering is performed according to the difference of u,
the region where the spike firing rate is relatively centered will
be retained. As STP changes from enhanced to suppressed, x∞

gradually transitions from the state of “low firing rate high
gradient, high firing rate low gradient” to “low firing rate
low gradient, high firing rate high gradient”.

We count the firing rates for the event camera and spiking
camera datasets. The distribution of the spike firing rate
is shown in Fig. 11. The firing rate of the event camera
and spiking camera data presents a long-tailed distribution.
Therefore, in order to find out motion spikes with low spike
firing rates, we choose to use the enhanced STP model, and
filter spikes by detecting the change of x . On this basis,
we choose τD = 0.05T so that changes in the range of
ρ ∈ [2, 1000] can be detected sensitively. It corresponds to
the weak facilitation STP model in the Fig. 10 (τF = 0.5T ).

2) Motion Neuron in Motion Estimation Module: In the
M1 layer of ODTSNet, the motion estimation is based on the

Fig. 11. Distribution of the spike firing rate of the event-based and spike-
based datasets.

Fig. 12. The effect of motion neuron settings on performance of optical flow
using event-based dataset DVSFLOW16.

weighted superposition of motion cells according to Eq. 13.
We quantify the entire motion space with motor neurons. Since
the phase plane is a grid-like spatial arrangement, the motion
orientation can be evenly divided into four or eight different
orientations. The speed setting is based on the characteristics
of the high temporal resolution of the neuromorphic camera,
assuming the spike shift will not exceed four pixel positions.

We make an ablation study with different motion neu-
ron settings on the DVSFLOW16 dataset [63]. Performance
of motion estimation is assessed by the Average Angular
Error (AAE) and Average End-Point Errors (AEE). As shown
in Fig. 12, using 8 motion orientations is obviously better
than 4 motion orientations. Besides, due to the low latency
advantage of the event camera, the performance of motion
estimation results changes more gently with the number of
speed codes increases. Therefore, to ensure the accuracy of
motion estimation, we set the neurons to 8×4 motion neurons
corresponding to eight motion orientations and four motion
speeds.

C. Evaluation of Modules

Fig. 9 illustrates examples of the filtered spikes obtained by
the dynamic adaption module, and the corresponding voltage
of the LIF neurons obtained by Eq. (11) and Eq. (12).
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Fig. 13. Visual comparison of the motion estimation on real event streams. Motion vector is encoded as the same colormap used in EV-FlowNet.. From top
to down, event sequences of clockwise and counterclockwise rotating disk. The second column shows the filtered results of the dynamic adaption module.
The third column illustrates the outputs of the M1 layer, which are rectified by the winner-take-all circuits in the MC layer (fourth column). The last two
columns are results of feedforward SNN [21] and EV-Flownet [64] respectively.

TABLE III
QUANTITATIVE COMPARISON WITH EV-FLOWNET ON EVENT CAMERA

OPTICAL FLOW DATASET DVSFLOW16 [63]

Obviously, the filtered spikes are clearer than the input
spikes/events, making the subsequent tasks more focused
on analyzing the moving object. Furthermore, we compare
the proposed motion estimation module with other existing
methods. EV-FlowNet [64] and the feedforward SNN [21]
are state-of-the-art event-based optical flow estimation meth-
ods, which are based on conventional DNNs and SNNs,
respectively. The qualitative evaluations for the rotating disk
of DVSFLOW16 dataset [63] are shown in Fig. 13, where
different colors referred to different motion directions are used
to visualize the estimated motion (applies only to the last four
columns).

These results show that the aperture problem is solved
by incorporating motion competition in the local region,
and the motion estimated by MC layer in a local region
is more consistent than the estimated results of M1 layer.
As can be seen in the fourth to sixth columns, the results
obtained by the ODTSnet-MC layer are comparable to those
of the EV-FlowNet and feedforward SNN methods. In addition
to qualitatively comparing the results of motion estimation,
we also compare the quantitative evaluation results of optical
flow estimation on DVSFLOW16 [63] with EV-FlowNet.
As reported in Tab. III, the proposed motion estimation
module can also obtain comparable quantitative results with
EV-FlowNet, and the results of MC layer are better than M1
layer.

The qualitative motion estimation results of EED, SRD and
synthetic data are shown in Fig. 14, Fig. 15 and Fig. 16,
respectively. In Fig. 14, there is a ball that flies across a

Fig. 14. Motion estimation results of the scenes in Extreme Event Datase
(EED). Different colors of the color circle in the first row referred to different
motion directions are used to visualize the estimated motion. The scenes are
the same as the second row of Fig. 13, in which a ball flies across a pillar.

pillar. In the last two columns, the spikes generated by the
ego-motion of cameras are filtered by the dynamic adaption
module, leaving the spikes of the high-speed flying ball. For
the spike sequences shown in Fig. 15, even though the shape
of digits is more complicated than the edges of the rotating-
disk, our model can still estimate the motion accurately.
For example, the digit “5” in the second row of Fig. 15 is
shown with magenta and bright red colors, which denotes the
left-down and downward direction, respectively. The proposed
model also can handle the scenario in the synthetic data named
“crossAC” with overlapping translation trajectories (“C” move
from left-top toward the right-down direction and “A” move
from left-down to the right-top, which are shown in Fig. 16).
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TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE EED DATASETS

Fig. 15. Motion estimation results of the counterclockwise rotating digits
sequence recorded by spiking cameras.

Fig. 16. Motion estimation results of the translation characters synthetic
sequences “crossAC” with salt and pepper noise (noise level = 0.06).

D. Comparison With the State-of-the-Art

We perform quantitative evaluation of object detection on
the event dataset EED [9] and the spiking dataset (SRD and
SRTC). As the EED is recorded using a moving DAVIS
camera, we need to distinguish the events generated by inde-
pendent moving objects and the cameras’ ego-motion. Some
tracking examples on the scenes of “Occluded sequence”
and “Multiple objects” are shown in Fig. 17. As the ground

Fig. 17. Tracking examples on the EED dataset. Left and right: predicted
location of the moving objects, and the corresponding trajectory.

truths (denoted by the bounding boxes with “GT” label)
are acquired by hand labeling on the RGB frames of digit
cameras, the interval between two consequent GT is rel-
atively long. However, our method can locate the moving
objects during the long interval, and get smoother tracking
results.

The quantitative results of object detection on the EED
are reported in Tab. IV. Similar to [39], we utilize the
evaluation criteria of Average Robustness (AR). The previ-
ous approaches can be divided into two categories. One is
implemented with deep neural networks [39], [40], [41], [42],
[43], [44], and the other is based on clustering events [8],
[9], [10], [65]. From Tab. IV, it can be seen that our method
outperforms the previous approaches and achieve the best
performance on all sequences. We achieve an average AR
of 99.21%.

In the spiking camera datasets, We annotate the movement
trajectories of each moving object on the spiking camera
dataset, enabling us to evaluate metrics for multi-object track-
ing. As shown in Fig. 18, compared to the tracking framework
(SVS) proposed by Huang et al. [5], ODTSnet can robustly
detect and track moving objects relatively continuously.
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Fig. 18. Examples of tracking result on the spiking datasets using ODTSnet. The estimated bounding boxes and trajectories are encoded with different
colors, and the white boxes with label “GT” denote the ground truth.

Fig. 19. Illustration of tracking results on the spiking dataset. From top
to down: the predcited trajectories of moving objects of SRD and SRTC
sequence.

TABLE V
QUANTITATIVE COMPARISON OF MULTI-TARGET

TRACKING RESULTS IN SPIKING DATASETS

Fig. 19 shows the corresponding predicted moving trajecto-
ries of each object against the ground truth. It can be seen from
the tracking results that both SVS and ODTSnet can smoothly
predict the moving trajectories of the five rotating digits in
the “SRD” sequence. For the motion trajectories of three
characters in the “SRTC” sequence with both rotational and
translational motions, the ODTSNet algorithm with motion
estimation module can continuously estimate the trajectories
of three moving objects, but the SVS algorithm will produce
a large number of misjudgments trajectory. This suggests that
object clustering relying only on spatial location is susceptible
to background spikes. Quantitative comparison of multi-target
tracking results is reported in Tab. V.

Fig. 20. Illustration of the proposed methods on the scenes of two high-speed
cross moving characters, “A” and “C”. (a) The estimated location and velocity
of each moving object. The locations of the two moving characters are
highlighted by bounding boxes with tracker ID “1” and “2” while the velocities
are visualized with arrows. (b) Motion flows of the estimated motion. (c) The
predicting trajectories of characters “A” and “C”.

Compared to the tracking results on SRD sequence, ODT-
Snet produces many false positives and missed targets on the
SRTC sequence. The main reason is that DBSCAN clustering
algorithm is sensitive to parameter Settings. Once there are
noise points between two objects, DBSCAN algorithm can
easily treat these two objects as one object. When the predicted
tracking box has a large deviation and the object is identified
as a new category, the Kalman filter will assign a new tracker
to it, resulting in the change of object ID.

The tracking results of the dataset “crossAC” are shown
in Fig. 20. Even if the characters “A” and “C” are occluded
during the movement, our algorithm still can track them
smoothly.
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TABLE VI
ABLATION STUDIES OF OUR PROPOSED DYNAMIC ADAPTION

MODULE AND MOTION ESTIMATION MODULE OVER
THE EVENT-BASED DATASETS (EED) AND

SPIKING DATASETS (SRD AND SRTC)

TABLE VII
ROBUSTNESS OF THE PROPOSED MODULES AGAINST NOISE INPUTS

E. Ablation Study

To evaluate each component of the proposed ODTSnet,
we split and recombine the modules to build different models.
The performance on the EED and SRD datasets is shown in
Tab. VI. For “ODTSnet1” and “ODTSnet2” that do not use
the motion estimation module, the state vector of the Kalman
filters only contains the center position of each cluster.

Except for using the AR metric, we also use the Multi-object
tracking accuracy (MOTA) [66] to measure continuity of the
trajectories obtained by the models. As can be seen from
Tab. VI, without the dynamic adaption and motion estimation
module, the model “ODTSnet1” cannot work. By adding the
dynamic adaption module (“ODTSnet2”) or motion estimation
module (“ODTSnet3”), the multi-object tracking performance
improves on all sequences. The model with both the dynamic
adaption and motion estimation modules (“ODTSnet4”) out-
performs either the dynamic adaption module only (“ODT-
Snet2”) or the motion estimation module only (“ODTSnet3”),
demonstrating the complementariness of the two proposed
modules.

As reported in the Tab. VI, the “ODTSnet2” with the
dynamic adaption module can achieve better performance than
the models “ODTSnet1” and “ODTSnet3”. However, it only
uses the spatial information to cluster the results and corrects
the tracking results with the typical constant velocity Kalman
filter. Thus, the tracking results of the model “ODTSnet2”
are more sensitive to the wrong detection results, resulting
in the miss of objects or switch of tracking ID (shown in
Fig. 21). In addition, on the SRTC dataset, the detection and
tracking performance of ODTSnet4 is significantly better than
that of ODTSnet2. This means that it is effective to use motion
estimation module to assist clustering when the camera has
ego-motion.

Fig. 21. Qualitative results of tracking the multiple high-speed rotating
characters with “ODTSnet2.”.

Robustness Against Noise: To further test the robustness of
the models, we add different levels of salt and pepper noise
into the synthetic data “crossAC” and evaluate the tracking
performance. The results are reported in Tab. VII. It can be
found that the full model “ODTSnet4” is the most robust
network. On the contrary, the model “ODTSnet1” cannot work
as the dynamic adaption and motion estimation modules are
removed. With the dynamic adaption module to filter the noise,
the “ODTSnet2” can achieve comparable performance when
the noise level is low. However, as the two characters will
shade each other at some time, clustering objects without the
motion information make the characters indistinguishable and
lead some targets to be missed. The tracking performance
of “ODTSnet3” is unstable because of the noise. Except for
the model “ODTSnet4”, all the other models fail to track
the cross-moving characters when the noise level gradually
increases.

F. Limitations

The main innovation of this paper is to propose a tracking
framework that can be used for both event cameras and
spiking cameras. In order to achieve robust tracking of multiple
targets in various scenarios, we propose a Dynamic Adap-
tion filtering module based on short-term plasticity and LIF
neurons, and a Motion Estimation module based on STDP
and WTA circuits. These two modules require no training
and can adjust neuron/synaptic states online based on incom-
ing spikes/event streams. In the proposed Dynamic Adap-
tion and Motion Estimation modules, all processes between
each location can be parallelized, and the time complexity
is O(1).

However, in the tracking module, we still use the tra-
ditional tracking algorithm (DBSCAN, and Kalman filter).
The total average time complexity of the DBSCAN cluster-
ing algorithm is O(n log n) (the worst time complexity is
O(n2)), and the space complexity is O(n), where n refers
to the number of points to be clustered. The time and
space complexity of the Kalman filter is O(K ), where K
represents the number of trackers. Therefore, the running
delay of the whole framework is mainly proportional to the
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number of spikes that need to be clustered after filtering.
And the DBSCAN algorithm is also sensitive to parameter
settings (to ensure fairness, the parameters used in all ablation
experiments are the same). Therefore, in the current overall
detection and tracking framework, we mainly ensure the
performance of detection and tracking, and the low-latency
advantages of neuromorphic cameras have not been reflected
yet. In future work, we will replace the current traditional
algorithms with a tracking module based on spiking neurons
to realize the tracking framework of the full-spiking neuron
pathway.

VI. CONCLUSION

In this paper, we present a novel bio-inspired unsupervised
motion estimation model for neuromorphic vision sensors.
We propose a dynamic adaption module based on short-
term plasticity, enabling eliminate the noise and redundant
signals by utilizing the spatiotemporal information of input
events/spikes. Further, the spiking neural networks-based
motion estimation module is introduced to perceive the motion
of various complex scenes.

Although the spike-based model can process events and
spikes asynchronously, the current implementation still uses
the form of discrete and synchronous processing of each spike
on the traditional processor. Therefore, at the beginning of
our model, we need to reduce the event/spike streams into a
“frame” -like expression. The output of the spiking camera is a
two-dimensional spike array at each timestamp so that it can be
directly fed into the network. However, the output of the event
camera is a sparse stream of events, and the time resolution
is usually above the millisecond level. It is time-consuming
to update the state of the model according to the temporal
resolution of the event camera. Besides, the spatiotemporal
information carried by the discrete event points is minimal,
which is not conducive to the downstream vision task. All the
existing event algorithms use sliding windows with constant
events or duration to convert the event flow into a frame-like
expression, and our approach here is similar.

The EV-Flownet and feedforward SNN can also provide
motion information to segment moving objects and back-
grounds, but their respective limitations make them unable
to detect objects in the complex task of EED. EV-Flownet
unable to predict optical flow in fast-motion scenes due to
the overlapping of dense event streams. The feedforward SNN
will downsample the input when predicting optical flow, which
makes small objects cannot be detected. Therefore, not every
motion-estimation method can well assist the object detection
task, especially in the complex and extreme scenes in the EED
dataset. The experiment results show that without iterative
optimizing or training with labeled data, the proposed model
can track multi-objects smoothly and outperform the state-of-
the-art algorithms on challenging datasets.
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